
www.manaraa.com

Authenticating Outputs of Computer Software
Using a Cryptographic Coprocessor?

John Kelsey Bruce Schneier

Counterpane Systems, 101 E Minnehaha Parkway, Minneapolis, MN 55419
{schneier,kelsey}@counterpane.com

Abstract. A cryptographic coprocessor is described for certifying out-
comes of software programs. The system for certifying and authenticating
outputs allows a third party who trusts the secure components of the sys-
tem to verify that a specified program actually executed and produced
a claimed output.

1 Introduction

We present an application of digital signatures [DH76]. Through a cryptographic
coprocessor [GUQ92, YT95, Sch96] — here called an ”Authenticator” — soft-
ware can certify particular outputs. Software can use this capability to allow the
Authenticator to certify that some specified outputs or outcomes of the software
have actually been achieved. These protocols can be implemented on a vari-
ety of hardware designs using any of several digital signature algorithms: RSA
[RSA78], ElGamal [ElG84], DSA [NIST94], etc.

Normally, if a person claims that he has performed some task or achieved
some result with a software program it can be difficult to verify that this actu-
ally occurred. The output itself may be displayed (printed or photographed), but
this is not always reliable evidence of the process that was followed to produce
that result. Our Authenticator can produce a digitally signed statement which
securely and reliably attests to the actual process of the program. The Authen-
ticator has access to the internal operation of the software (as will be described
in detail), and its ability to produce secure and untamperable output allows this
authentication functionality.

An application of this capability would be the certification of a high score
in some game software. Perhaps the manufacturer wishes to set up a promotion
where prizes are offered to people who complete a game or achieve a specified
high score. Such promotions are difficult to offer at present due to the difficulty
of fairly verifying claims of success. The Software Authenticator would allow
those players who have actually met the goals to certify their results and win
the prize, while preventing cheaters from sending in doctored output or copying
output from true winners and claiming it as their own.
? This work was done under contract with Walker Digital, Inc.; U.S. and international

patents are pending.



www.manaraa.com

The same system has another, independent, capability: software metering.
The Authenticator can be used to check aspects of a program’s functioning
related to the amount of time spent or number of uses. As with an electric meter,
the Authenticator records information about how much the software has been
used, in a form which the end user cannot tamper with. At some regular interval
(probably every month) the Authenticator is read by a remote connection to
a central computing service. The central computer then bills the user for his
actual usage of the software during the month just as with other utilities. Several
variations on this general scheme will be described using the same overall system
configuration.

2 System Configuration

There are three main hardware components to the authentication system: the
Computer, the Authenticator, and the Data Source. Generally, these will be
connected in one of the following two configurations:

Authenticator ←→ Computer ←→ Data Source
Computer ←→ Authenticator ←→ Data Source
The Computer is the main computing unit owned by the end user, which runs

the main part of the software programs he uses. It may be a general purpose
computer such as a PC, or it may be more specialized, such as a dedicated game
playing unit or TV-based computer entertainment system. It will have some
input and output capabilities, typically including a video/sound display and
possibly a printer for output, with input ranging from simple joystick systems
to full keyboard and/or video capability. The Computer will include RAM and
usually ROM memory, and may also have non-volatile memory such as a disk
drive or Flash RAM. For most applications the Computer must have a modem or
other network connection to allow it to communicate with the Central Computer.

The Authenticator is a small piece of hardware enclosed in a tamper-resistant
casing which includes CPU and memory. The Authenticator is a computer in
itself, but generally a less powerful one than the main Computer in the system.
It will have much less RAM and its CPU will probably be less powerful. The
Authenticator must include some non-volatile memory as described above, some
RAM, and some ROM which holds the program which implements its basic
functionality. The non-volatile RAM of the Authenticator will hold the cryp-
tographic keys used for communication and authentication. The Authenticator
will also require a hardware random-number source to be used for initializing
keys.

This paper assumes that a software program can be divided into two components–
one running on the Authenticator and the other running on the Computer–such
that the Authenticator can determine the output of the entire software program.

The Data Source represents the place from which software programs which
will be run on the metering system come. Depending on the configuration, this

2



www.manaraa.com

may be a local disk drive or CD-ROM, a game cartridge, or a remote computer
connected by telephone line or computer network connection.

One system component which is not shown in the diagrams above is the cen-
tralized computer system which communicates with the Authenticator (possibly
via the Computer). This server will be referred to as the Central Computer (or
CC). A communications link must exist for the Authenticator to talk to the
Central Computer at regular intervals in order to transmit authenticated output
information. In many ways this is similar to Chaum’s electronic database with
an “observer” chip [Cha93].

As shown in the diagrams above, software programs flow from the Data
Source into the Computer/Authenticator system. This flow is essentially one
directional, although in some circumstances (such as if the Data Source is a disk
drive or a computer on the Internet) data may flow in the opposite direction
during program execution or at other times. (Another example of this model is
a satellite-to-PC system: lots of continuous bandwidth down, and a small trickle
up via a dial-up line.) But for the unique features of the metering/authentication
system, the Data Source can be thought of as a read-only source of programs to
execute.

In addition, the diagrams both show a two-way link between Authenticator
and Computer. This link is active during most phases of the protocol, and al-
though the amount of data to be sent across the link is normally not large, it
is necessary during software execution that the link latency (the time needed to
get a short message across) is small. The Computer and the Authenticator work
in close cooperation during program execution and so their communication must
not introduce noticeable delays. 2

The two diagrams differ in whether the Data Source connects to the computer
directly, as shown in the first diagram, or whether it connects via the interme-
diary of the Authenticator, as shown in the second. Example configurations for
the first case might include a general-purpose computer, with the Authenticator
in the form of a smart card, PCMCIA card (now called a PC Card), parallel- or
serial-port dongle, or internal expansion card. A dedicated videogame machine,
like a Sega Saturn, which had an expansion port or slot where the Authenticator
could plug in would also fit this configuration.

Examples of the second configuration would include systems where the Au-
thenticator is built into a special device to access the Data Source. For example,
the Authenticator could be built into a custom CD-ROM drive which would then
be able to use special CD’s customized for the metering/authentication system.
Alternatively, the Data Source could be a remote computer reached via the In-

2 In the protocol descriptions and other discussion below, the Authenticator will be
referred to as though it is capable of performing actions which only the Computer
can do, such as accessing the Data Source in the first diagram above, or storing data
in the Computer’s non-volatile memory. It is understood that in such situations it is
actually a cooperation between the Computer and the Authenticator which occurs,
with the Computer performing these functions at the request of the Authenticator.

3



www.manaraa.com

ternet or some other computer network, and the Authenticator would be built
into a special modem used to access the data. Another example of this configura-
tion would build the Authenticator into a pass-through box, like a Game Genie,
which would plug into a cartridge slot on a game machine and allow cartridges
to plug into the Authenticator and be the Data Source.

The functional differences between the two configurations shown are not sig-
nificant. The choice will usually be dictated by other considerations in terms of
the expansion capabilities of the system as to where the best place is to attach
the Authenticator. If all else is equal, there may be some small advantage to the
second configuration, where the Data Source passes through the Authenticator
en route to the Computer. One option for the use of the system is for the Data
Source to store the whole software program in encrypted form, both the secure
part which will run on the Authenticator and the insecure part which will run on
the computer. If this option is used, then passing the data through the Authen-
ticator will allow it to be conveniently decrypted as it is loaded into the memory
of the Computer. With the other configuration this is still possible, but the data
would have to be transferred from the Computer to the Authenticator and back
in order to be decrypted, requiring more data transfers and so taking more time
to load the program into memory. As will be discussed below, the security in-
crease provided by this option is only marginal so it would not normally be the
determining factor in selecting which configuration option to use.

3 Applications

Certifying High Scores: One application of the output authentication system is
high score verification in the context of a dedicated game system, or entertain-
ment software on a general purpose computer. This could be used as part of a
contest, or continual high score rankings could be maintained and people could
gain bragging rights by seeing how they ranked against other players around
the world. This could open up possibilities where some of the characteristics
of online games, specifically the element of competition against other players,
would be available in the context of home game systems. Action, strategy, and
puzzle games could all be made more fun and exciting if successful players could
demonstrate their achievements publicly.

Metering: If the authenticated output were how long an application was run-
ning or how much data an application displayed or processed, then the system
can be used as a software meter. This could be used as a “pay-for-play” arcade
system for home video game machines, a “pay-for-use” or “pay-for-feature” sys-
tem for personal computers, or a “pay-per-page” system for database programs.
The meter could be installed on the much-hyped Internet terminal, allowing
users to pay only for the time they use the machine; enhancements could even
allow metering of World Wide Web pages.

Distributed Key Search: Another possible application of output certification
could arise in the context of distributed computing. Several research groups are

4



www.manaraa.com

working on systems to harness the massive collective computational power of
the Internet and apply it to hard problems. One example which has already
had some success is in factoring large numbers. Another area which has been
explored is exhaustive search for cryptographic keys. If these research systems
could be commercialized so that people were paid for letting their computers
be used for problems like these, it could make available a huge new source of
computer cycles. But one problem with these ideas is the issue of verifying that
each participant actually performed the computational work he had agreed to.
Some kinds of applications are self-checking, such as graphics rendering, but
others, such as the key search or factoring examples, may legitimately end up
with no successful outputs. In those cases a user could cheat by simultaneously
allocating his computers to multiple projects and report no results to all of them,
collecting more pay than he is entitled to. The authenticated output system can
fix this problem, by making sure that even if the output is null, that that is the
legitimate result of running the software. People would be required to present
authenticated output from their program runs if they expect to get paid for
their compute cycles. This technology can reduce cheating and thereby bring
the whole approach closer to economic feasibility.

4 System Overview

4.1 Signature and Trust Issues

One issue relating to any form of authenticated output is what the trust rela-
tionships are between the Authenticator and those who view the output. In our
system, the output is authenticated by the Authenticator. This means that those
who trust the Authenticator and are in a position to verify its signatures are the
ones who will be able to trust and accept the authentication. This will include
most particularly the Central Computer, who shares a key with the Authenti-
cator and who, if symmetric cryptography is used for the authentication, is the
only entity (other than the Authenticator itself) that can verify the signatures.

In some applications the authenticated output needs to be verified by other
parties. The CC and its affiliated organizations can verify that data is accurately
certified by an Authenticator which is part of the authentication system, and
then provide additional public-key signatures on that data. This second-order
certification can use a widely known and respected public key and is suitable for
wide distribution and acceptance.

4.2 Communications

Unlike software metering, output authentication can be designed to have very
modest data transmission requirements between the Authenticator and the CC.
This raises the possibility that it could be used even in a low-bandwidth envi-
ronment where no direct electronic link exists between the Authenticator and

5



www.manaraa.com

the CC, but in which the information is displayed on the screen by the Authenti-
cator and the user manually transfers it to the CC, say by calling the CC on the
telephone and entering the data on his telephone keypad. Similarly data could
be returned from CC to Authenticator by alphanumeric data being provided
over the phone from the CC (via voice synthesis) and entered into the Authen-
ticator through the regular input device, and keyboard or even a simple joystick
interface.

4.3 Authenticator/Computer Interface

In order for the Authenticator to be in a position to authenticate the output of
the program, it must be able to know that the output actually did occur. This
means that the Authenticator must be intimately involved in the calculation of
the output, such that even if the part of the program running in the insecure
Computer is tampered with, the Authenticator is able to know whether a given
output actually occurred or not. This may require a larger fraction of the pro-
gram execution to occur on the Authenticator than in the case of the metered
software application.

5 Protocols

Protocols will be described for two basic cases, the first being an electronic con-
nection between the Authenticator and the Central Computer, and the second
being the simple case described above where all such communication is via the
human user of the system. This second system will be referred to as the “low
bandwidth” case, and probably consists of a human on the telephone, entering
characters read to him over the telephone into the computer, and typing digits
from the computer screen into the telephone.

1. Initialization of the Authenticator. This is used when the Authenticator
is first activated, to generate keys and communicate them to the CC. For
the low-bandwidth case it may be preferable to have the Authenticator’s
unique secret key calculated at the factory and programmed into its ROM
at manufacturing time, recorded in the CC’s database.

2. Adding a New Program. This protocol is used when the user has acquired
a new software program which requires information from the CC in order
to run. As with the metering application, some programs may be runnable
without any new information from the CC but others will require keying
information to be acquired. The low-bandwidth case will require the use of
programs which do not require interaction with the CC and so this protocol
will not be used in that case.

3. Starting Authenticated Software. This protocol involves the Authenticator,
Computer, and Data Source. It describes how these components interact at
the time an authenticated software program is loaded and execution begun.

6



www.manaraa.com

4. Authenticate Output. This is the main protocol of the system, used when a
program produces some output which the user wants to have authenticated.

Each program is generally encrypted using a different key, unique to that
program. There are some advantages to using a single key to encrypt a large
number of programs, but there is some security risk in doing so, since that key
would be more valuable than others and if it were somehow exposed the set of
programs which use it would all become insecure. So it is expected that in most
cases programs will be encrypted using a unique key.

In order to begin running such a program, then, it will be necessary for the
metering system to acquire the key for that program. This will be done as part
of the “Adding a New Program” protocol.

In some cases the convenience of being able to run a program for the first
time without any interaction with the CC will be important. In that case the
Authenticator must already have a key for that program. This could be handled
by having all such programs be encrypted with the same key (or possibly all
programs from a given manufacturer encrypted with the same key), and having
the CC send that key to all Authenticators during their initialization. At a slight
cost in memory the system can be made somewhat more secure by using several
different keys for the programs, with the key being chosen based on the Software
ID (IDS), a unique ID associated with each program (discussed in more detail
below). In this way the keys will be shared approximately equally across all such
immediately-runnable programs, reducing the value of each individual key of this
type. In the low-bandwidth implementation it is expected that all programs will
be of this type due to the difficulty of acquiring a key for each different program
without an electronic connection to the CC.

In the resulting system all programs are of one of two types. They can be
immediately-runnable, and hence encrypted using one of the shared keys; or they
can requiring interaction with CC before first run, in which case the program is
encrypted with a unique key.

5.1 Data Structures

There are many important pieces of data associated with the Authenticator.
Authenticator Keys: The Authenticator requires several keys in order to per-

form its varied functions, including communicating securely with the Central
Computer. Keys are of three types: “secret” keys are those used with conven-
tional cryptosystems such as DES [NBS77]; “private” and “public” keys are those
used with public key cryptosystems such as RSA [RSA78].

1. Authenticator’s Secret Key (SKA): Also known to CC. This key is used for
secret and authenticated communication between the CC and the Authen-
ticator, possibly via the Computer and/or an insecure communications link.
SKA is normally generated by the Authenticator during the initialization

7



www.manaraa.com

phase, and is then transmitted to the CC in a message secured by PKCC .
Alternatively it may be programmed into the Authenticator’s ROM at man-
ufacturing time, and recorded into the CC’s database at that time. This will
be necessary for the low-bandwidth authentication application.

2. PKCC : Central Computer’s public key, known to Authenticator. This key
is used for initial communications between the Authenticator and the CC
before SKA is created. It is burned into ROM at manufacturing time.

3. SKIR: Secret key for immediately-runnable programs. As described above,
it may be desirable to support a class of programs which can be run immedi-
ately upon acquisition, without running the Adding a New Program proto-
col. (This is especially necessary for the low-bandwidth case.) For this to be
possible the Authenticator must already store the key for such a program.
All such programs share a special IDS , and the Authenticator will recognize
that ID and use the SKIR key to decrypt the program, as described in the
Using Authenticated Software protocol. As mentioned above, a variation on
this idea would define several IDS ’s of the immediately-runnable class, each
of which would be associated with a different SKIR key.

4. IDA: An identification number unique to each Authenticator, burned into
ROM at manufacturing time

5. Table[Software,Key]: This table has a list of IDS and (Software,Key)
pairs. Each pair contains the key which will be needed to decrypt the en-
crypted portions of the software with the specified IDS .

There are also data structures associated with each piece of metered software
that comes from the Data Source. Each piece of authenticatable software from
the Data Source is divided into three parts. The Software Control Block has
information about the software which identifies it. The executable software itself
occupies the two remaining parts. Part of the software is designed to run securely
on the Authenticator, while part is designed to run in the insecure environment
of the Computer.

1. Software Control Block: The Software Control Block has information about
the software which will be used by the metering system to run it. The SCB
is signed by the private key of the CC, and the Authenticator checks the
signature when the software is loaded. SCB fields include the IDS : This is
a unique number identifying this piece of meterable software. Every piece
of software and every revision of a software item have unique IDS ’s. As
discussed in the context of the metering application, there are two general
kinds of IDS ’s, “program” and “component,” distinguishable by their high
order bits. Program IDS ’s are used to refer to programs as a whole, while
Component IDS ’s refer to specific features of a program. Only Program
IDS ’s are necessary for the authentication application.

2. Insecure Software Component: The Insecure Software Component is the bulk
of the software program and runs on the Computer. It may be stored in en-
crypted form in the Data Source, in which case the Authenticator will be

8



www.manaraa.com

responsible for decrypting it at the time the program is loaded into mem-
ory. If this decryption step will add unacceptable delay to program loading,
this insecure component can be stored unencrypted at only a slight loss of
security. Since the memory of the Computer is insecure by definition, a de-
termined attacker can gain access to the plaintext of the Insecure Software
Component in any case. So the additional security added by storing it in
secure form is limited in value.

3. Secure Software Component: The Secure Software Component runs on the
Authenticator itself. It is stored in encrypted form in the Data Source and
must be decrypted by the Authenticator as the program is loaded into mem-
ory. As will be described below, the Secure Software Component contains
software which implements selected but crucial functionality on which the
larger body of software in the Insecure Software Component depends. The
encryption of the Secure Software Component is the primary feature by
which the overall security of the system is maintained. It prevents attackers
from replacing this component with software which will authenticate outputs
which did not occur.

5.2 Encryption of messages

Where electronic communication is used, all messages between the CC and the
Authenticator are encrypted and authenticated. Either public-key or symmetric
encryption can be used, although symmetric encryption appears to provide suf-
ficient security for most of the protocols. The encryption used is assumed to be
a strong, modern cipher with key sizes in the range of 64 to 128 bits. Examples
include IDEA [LMM91], or Blowfish [Sch94]. Public key encryption would most
commonly use RSA [RSA78].

Once initialization is complete, CC and Authenticator share SKA, which can
be used with a conventional encryption system to provide for both encryption
and authentication. Because the Authenticator has limited access to sources of
entropy, and because the total volume of data to be communicated between
Authenticator and CC is small, a few hundred bytes per month in typical usage,
using SKA as the key for all communications between the two systems should
provide adequate security for this application. In this configuration, messages
from the Authenticator are preceded by sending IDA (a unique identifier specific
to the Authenticator and burned into its ROM at manufacturing time) in the
clear, allowing the CC to lookup the encryption key used, followed by the message
itself encrypted with SKA. Responses from CC are sent encrypted with SKA.

All communications between CC and Authenticator are initiated by the Au-
thenticator, with the CC acting as a server. As described above, it is expected
that the user will actually initiate such communications rather than having the
Authenticator spontaneously issue requests. Messages sent by the Authenticator
will include a sequence number which will increment each time a message is sent
in that direction. Reply messages from the CC will include that same sequence
number. This will allow both sides to detect message replay attacks, in which

9



www.manaraa.com

messages are captured and then replayed at a later time in order to disrupt the
protocols.

The packet formats shown below do not include encryption headers or the
account and sequence numbers, which are included as described above except
where indicated. Each packet begins with an unique identifier value describing
the kind of packet it is, and is followed by data as described below.

For the low-bandwidth case, the protocols used are more modest in their
communication requirements, and no implicit sequence numbers or encryption
are used other than those explicitly called out.

5.3 Initialization of the Authenticator

For the low-bandwidth case, no special protocol is needed at initialization time.
SKA is programmed into ROM at manufacturing time like IDA and PKCC .
This protocol is only used in the case of electronic communication between Au-
thenticator and CC.

This is used when the Authenticator is first activated, to generate keys and
communicate them to the CC. Note that at that time the Authenticator has
access to PKCC , the Central Computer’s public key, and IDA, its own unique
ID. We assume that the Authenticator has access to a good source of random
numbers via a hardware random number generator.

Unlike other protocols, these packets are not implicitly encrypted with the
keys shared between CC and the Authenticator. Instead, the encryption used is
explicitly identified at each step of this protocol.

1. Authenticator generates SKA, the random key which will be used for com-
munication between itself and the CC.

2. Authenticator creates an Initialization Message block of the following format:

Initialization Message
IDA

Current date and time
SKA

3. Authenticator encrypts the Initialization Message block with SKA, then
encrypts SKA using PKCC and sends both blocks to CC.

4. CC recovers first SKA, then the Initialization Message block. It verifies that
date and time are approximately current, and records the new IDA, checking
that it has not been used before. It remembers SKA and associates that value
with IDA.

5. CC creates an Initialization Message Response block of the following form:

Initialization Message Response

6. CC encrypts the Initialization Message Response block under SKA and sends
it back to the Authenticator.

7. Authenticator decrypts and verifies the IM Response block.

10



www.manaraa.com

5.4 Adding a New Program

This protocol is used when the user has acquired one or more new software
programs which require information from the CC in order to run. All messages in
this protocol are sent protected by encryption and sequence numbers as described
above. In the low-bandwidth case all programs are of the immediately-runnable
type and so this protocol is not used in that case.

1. Authenticator reads new programs’ Program Control Block(s) from Data
Source, and extracts IDS for (each) program.

2. Authenticator creates a New Program Message of the following format:

New Program Message
Number of programs requested
IDS

IDS

...

3. Authenticator transmits the New Program Message to the CC, encrypted
with SKA.

4. CC looks up the IDS ’s for which keys are requested to determine the keys
needed to decrypt those programs.

5. CC creates a New Program Message Response of the following format:

New Program Message Response
Number of programs
IDS , Key
IDS , Key
IDS , Key
...

6. CC securely transmits the New Program Message Response to the Authen-
ticator.

7. Authenticator records the key information for each software program in its
Table[Software,Key] structure.

5.5 Starting Authenticated Software

This protocol describes how the Authenticator, Computer, and Data Source in-
teract at the time an authenticated software program is loaded and execution
begun. As described above, the software which comes from the Data Source
contains a Software Control Block and two executable components, an insecure
component which executes on the Computer and a secure component which exe-
cutes on the Authenticator. At least the secure component is encrypted, and the
insecure component may be encrypted as well. Note that in the low-bandwidth
case the software will be immediately-runnable.

11



www.manaraa.com

1. Authenticator reads the Software Control Block from the Data Source and
extracts the IDS for the software.

2. Authenticator determines whether the required key is available to decrypt
the program. The key will be found either by looking up the IDS from the
Software Control Block in the Table[Software,Key], or else will be SKIR

for immediately-runnable programs (recognized by their IDS). If the key is
not available the Authenticator displays a message informing the user that
he needs to add the new program to the current list of software and enable
the communication with CC to acquire the needed keys, and the protocol
terminates.

3. Authenticator and Computer then read and decrypt the Insecure and Secure
Software Components from the Data Source. As noted above, the Secure
Software Component will always be encrypted, and the Insecure Software
Component may or may not be encrypted, depending on design tradeoffs.

4. Authenticator and Computer then transfer control to the newly read software
components, Authenticator running the Secure Software Component and
Computer running the Insecure Software Component.

5.6 Authenticate Output

This is the principle protocol of the system, used when a program produces
some output which the user wants to have authenticated. We assume that the
division of software between the secure and insecure components is such that the
Authenticator can in fact determine that the specified output actually occurred.
For the electronic communication case it works as follows.

1. Authenticator creates an Authenticated Output message of the following
form:

Authenticated Output
IDS

Null terminated text string describing output

2. Authenticator sends the Authenticated Output message to CC, encrypted
as usual with SKA.

3. CC validates that the message correctly decrypts using SKA and accepts
output on that basis. As described above CC may then re-authenticate the
output under its own PKCC or perform whatever other actions are appro-
priate.

4. CC Returns an Authentication Output Response block to confirm that it
has accepted the authenticated output. The form is:

Authenticated Output Response
IDS

Null terminated text string from CC with implementation-specific response.

5. Authenticator displays response from CC.

12



www.manaraa.com

In the low-bandwidth case a different protocol is used, one suitable to the
limited communications bandwidth available if a person is manually transferring
the data between the Authenticator and CC via a telephone connection:

1. Authenticator displays program output on the screen, along with its IDA

(possibly just some fraction of the bits of IDA is shown, enough to narrow
down the possibilities to no more than a handful of Authenticators).

2. User dials CC on the telephone and enters this information using his touch-
tone keypad, as prompted by a recorded voice. (This option is severely lim-
ited by the number of digits a user can reasonably be expected to type in.)

3. CC tells the user to enter a specific random challenge string into the Authen-
ticator using the input devices available, a keypad or a joystick interface.

4. Authenticator calculates a cryptographic hash of the program output and
challenge string and encrypts it using SKA, displaying the result.

5. The User enters this result into the CC again using the keypad.
6. CC calculates the hash and encryption on its own and confirms the value

entered by the user.

Several variations are possible. To improve reliability, the values which the
user is asked to transfer can be padded with some redundancy to allow some level
of error correction if he gets a few digits wrong. A variation on the above protocol
uses a separate key than SKA, one which is the same for all Authenticators and
is programmed into their ROM and manufacturing time. If this is done there is
no need for the Authenticator to display IDA in step 1 or the user to enter it
in step 2. Step 4 can be done by using a keyed one-way hash function instead of
an encryption function.

6 Conclusions

Real-world applications of cryptography often only require the simplest of algo-
rithms and protocols. We have shown how to take the simple notion of digital
signatures and, by combining it with the notion of a secure processor, create a
robust application for authenticating the outputs of software. Protocols such as
these will most likely play a large role in electronic commerce application.

Further research is required in dividing software into secure and insecure
components in such a way that if the Authenticator executes only the secure
components, then the Authenticator can determine that specified output for the
whole software has actually occurred.

7 Acknowledgments

The authors would like to thank James Jorasch, Jay Walker, and the CARDIS
program committee for their helpful comments.

13



www.manaraa.com

References

[Cha93] D. Chaum and T. Pedersen, “Wallet Databases with Observers,” Ad-
vances in Cryptology — CRYPTO ’92, Springer-Verlag, 1993, pp. 89–105.

[DH76] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE
Transactions on Information Theory, v. IT-22, n. 6, Nov 1976, pp. 644-
654.

[ElG84] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, IEEE Transactions on Information Theory, v.
IT-31, n. 4, 1985, pp. 469-472.

[GUQ92] L.C. Guillou, M. Udon, and J.-J. Quisquater, “The Smart Card: A Stan-
dardized Security Device Dedicated to Public Key Cryptography,” Con-
tempory Cryptology: The Science of Information Integrity, G. Simmons,
ed., IEEE Press, 1992, pp. 561-613.

[LMM91] X. Lai, J. Massey, and S. Murphy, “Markov Ciphers and Differen-
tial Cryptanalysis,” Advances in Cryptology — CRYPTO ’91, Springer-
Verlag, 1991, pp. 17–38.

[NBS77] National Bureau of Standards, NBS FIPS PUB 46, “Data Encryption
Standard,” National Bureau of Standards, U.S. Department of Com-
merce, Jan 1977.

[NIST94] National Institute of Standards and Technologies, NIST FIPS PUB 186,
“Digital Signature Standard,” U.S. Department of Commerce, May 1994.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digi-
tal Signatures and Public-Key Cryptosystems,” Communications of the
ACM, v. 21, n. 2, Feb 1978, pp. 120-126.

[Sch94] B. Schneier, “Description of a New Variable-Length Key, 64-Bit Block Ci-
pher (Blowfish),” Fast Software Encryption, Cambridge Security Work-
shop Proceedings, Springer-Verlag, 1994, pp. 191–204.

[Sch96] B. Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons,
1996.

[YT95] B. Yee and J.D. Tygar, “Secure Coprocessors in Electronic Commerce
Applications,” The First USENIX Workshop on Electronic Commerce,
USENIX Association, 1995, pp. 155-170.

This article was processed using the LATEX macro package with LLNCS style

14


